
Northeastern University

Department of Civil and Environmental
Engineering Reports

Department of Civil and Environmental
Engineering

September 25, 2013

Description of geometric nonlinearity for beam-
column analysis in OpenSees
Mark D. Denavit
Stanley D. Lindsey and Associates, Ltd.

Jerome F. Hajjar
Northeastern University

Report No. NEU-CEE-2013-02

This work is available open access, hosted by Northeastern University.

Recommended Citation
Denavit, Mark D. and Hajjar, Jerome F., "Description of geometric nonlinearity for beam-column analysis in OpenSees" (2013).
Department of Civil and Environmental Engineering Reports. Report No. NEU-CEE-2013-02. Department of Civil and Environmental
Engineering, Northeastern University, Boston, Massachusetts. http://hdl.handle.net/2047/d20003280

http://iris.lib.neu.edu/civil_env_eng_rep
http://iris.lib.neu.edu/civil_env_eng_rep
http://iris.lib.neu.edu/civil_env_eng
http://iris.lib.neu.edu/civil_env_eng
http://hdl.handle.net/2047/d20003280


ii 
 

Northeastern University was founded in 1898, as a private research university. Northeastern University is 

a leader in worldwide experiential learning, urban engagement, and interdisciplinary research that meets 

global and societal needs. Department of Civil and Environmental Engineering has over 100 years of 

history and tradition in research, teaching and service to the community, making important contributions 

to the development of our civil infrastructure and the environment, both nationally and internationally. 

 

Contact: 

Department of Civil & Environmental Engineering 

400 Snell Engineering Center 

Northeastern University 

360 Huntington Avenue 

Boston, MA 02115 

(617) 373-2444 

(617) 373-4419 (fax) 

 

The work described in this report was conducted as part of a NEESR project supported by the National 

Science Foundation under Grant No. CMMI-0619047, the American Institute of Steel Construction, the 

Georgia Institute of Technology, and the University of Illinois at Urbana-Champaign. Any opinions, 

findings, and conclusions expressed in this material are those of the authors and do not necessarily 

reflect the views of the National Science Foundation or other sponsors. 

 

Northeastern University 

Boston, Massachusetts 

September 2013 

 



iii 

Abstract 

OpenSees is a powerful, object-oriented, open source software framework for simulating the 

seismic response of structural and geotechnical systems. It has broad capabilities, including 

geometric nonlinear analysis of frame structures. This report provides a brief description of the 

formulation for geometric nonlinearity for beam-column elements in OpenSees. The coding 

structure is described along with the general procedure for state determination. A mathematical 

description of the various coordinate transformations currently available within the OpenSees 

framework is presented for two-dimensional elements. Additionally, examples that illustrate the 

various coordinate transformations are shown.  
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Introduction 

This report is intended to provide a description of geometric nonlinearity for beam-

columns in OpenSees. First, the coding structure is described along with the general procedure 

for state determination. Second, a mathematical description of the various coordinate 

transformations is presented for two-dimensional elements. Finally, examples which illustrate the 

various coordinate transformations are shown. For the purposes of this report, elemental loads 

and nodal offsets have been ignored. 

Coding Structure and State Determination 

The programming structure of OpenSees allows for independent selection of the beam-

column element and geometric transformation. For the standard OpenSees beam-column 

elements, the difference between geometric linear and geometric nonlinear analysis lies in the 

geometric transformation alone, since the elements have no internal geometric nonlinearity. 

 
Figure 1. Schematic of Coding Structure 

The following is a basic description of the steps involved in the state determination 

algorithm performed whenever incremental displacements are computed. 

1. The element receives global displacements from the connected nodes 

2. The element sends the global displacements to the geometric transformation 

3. The element receives natural displacements from the geometric transformation 

4. The element along with any constitutive relations (sections, etc.) compute element forces 

and stiffness in the natural coordinates 

5. The element sends the element forces and stiffness in the natural coordinates to the 

geometric transformation 

6. The element receives element forces and stiffness in global coordinates from the 

geometric transformation 

7. The element sends (or rather makes available to send upon request) the element forces 

and stiffness in global coordinates to the analysis 

OpenSees

Beam-Column Element

e.g., Force Based Distributed Plasticity 

(nonlinearBeamColumn), Elastic

(elasticBeamColumn), 

Concentrated Plasticity 

(beamWithHinges)

Geometric Transformation

i.e., Linear Transformation (Linear), 

Transformation with Some Nonlinearity 

(PDelta), Exact Nonlinear 

Transformation (Corotational)

Constitutive

1

2 3

4

5 6

7



2 

As described in these steps, the main tasks of geometric transformation object are 1) to 

transform global displacements to natural coordinates and 2) to transform natural forces and 

stiffnesses to global coordinates. The following section provides a description of how the second 

task is accomplished for each of the three geometric transformation objects in OpenSees. 

Mathematical Description 

The transformation can be expressed mathematically through the following equations. 

The forces in the global system, Qglobal, are related to the forces in the natural system, Qnatural, 

through the transformation matrix, T. 

 T=global naturalQ T Q  [1] 

The transformation matrix can be separated into two transformations, one that performs 

the transformation from natural to local coordinates and another that performs the transformation 

from local to global coordinates. 

 
T T T

=

=
toLocal toGlobal

toGlobal toLocal

T T T

T T T
 [2] 

 T T=global toGlobal toLocal naturalQ T T Q  [3] 

Based on this transformation, the stiffness matrix is also transformed to the global frame 

through the following relationship noting that the transformation to global coordinates is constant 

(e.g., Alemdar and White 2005). 

 

( )

T
T T

T T

 ∂= + ∂ 

= +

toLocal
global toGlobal natural toLocal natural toLocal toGlobal

local

toGlobal geom,external toLocal natural toLocal toGlobal

T
K T Q T K T T

q

T K T K T T

 [4] 

In two dimensions, with force vectors defined as in Equations 5 and 6, the exact 

transformation matrix is shown in Equation 7, where β is the angle between the positive x axis 

and the element and L is the length of the element as shown in Figure 2. It should be noted that 

with an exact transformation, the values used for β and L are current rather than initial. This 

transformation is used by the Corotational transformation in OpenSees.  
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Figure 2. Geometry of a beam-column element 
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The resulting external geometric stiffness matrix is shown in Equation 10. 
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 [10] 

where, cosc α= , sins α= , and α is the rotation of the displaced chord from the initial 

chord 

For the Linear coordinate transformation, the transformation matrices take the form 

shown in Equations 11 and 12, where the subscript “o” indicates the initial value. These matrices 

are identical those of the exact transformation (Equations 8 and 9) with the exception that initial 

values are used for the orientation and length of the element, resulting in a constant 

transformation matrix. Since the transformation matrix is constant the external geometric 

stiffness matrix is zero (Equation 13). 
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For the PDelta coordinate transformation, the transformation matrices take the form 

shown in Equations 15 and 16, where δ∆y  is the difference between transverse displacements at 

the nodes in local coordinates (Equation 14). The additional terms in Equation 16 (as compared 

to Equation 12) are the “P-Delta” terms and make the transformation not constant, resulting in an 

external geometric stiffness matrix (Equation 17)  

 , ,y y nodei y node jδ∆ = ∆ − ∆  [14] 
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Example Analyses 

Euler Buckling of a Simply Supported Column  

The ability of the three coordinate transformations to detect the Euler buckling load is 

studied by analyzing a simply supported column (Figure 3a). The column is without imperfection 

and the load is applied concentrically. The critical load of the column is given analytically by 

Equation 18, assuming an effective length factor, K, of 1.   

 
( )

2

2cr

EI
P

KL

π=  [18] 
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In the analysis, the critical load is the load at which the minimum Eigen value of the 

stiffness matrix becomes zero. The analyses were performed with one to five displacement-based 

elastic beam-column elements (elasticBeamColumn) along the height of the column.  

The computational results and error statistics are shown in Figure 3c. From this data 

several observations can be made: 

• The lack of a critical load when only one element is used confirms that no P-δ geometric 

nonlinearity is implemented within the element.  

• The lack of P-δ geometric nonlinearity implemented within the element results in a much 

slower convergence to theoretical results. As a point of comparison, an element with internal 

geometric stiffness can obtain results within 1% with two elements and within 0.1% with 

four elements (Denavit and Hajjar 2010). 

• The difference between the Corotational and PDelta transformations is small.  

• The analyses with the Linear transformation, as expected, did not exhibit a critical load. 

 
(a) Configuration 

 

E = 29,000 

I = 110 

A = 9.12×10
3
 

L = 60 

Pcr = 8,745.6 

 

(b) Properties 

 

 
 

(c) Results 

Figure 3. Configuration and Results of the Analysis of a Simply Supported Beam under 

Axial Loading 

Cantilever under Axial Loading 

To compare the behavior of the three different coordinate transformations, the response 

of a cantilever column under axial loading is studied. The structure, as described in Figure 4a, is 

initially straight. A small bending moment is applied at the free end to introduce a perturbation. 

L

P

Number of 

Elements

Critical 

Load

Percent 

Error

Critical 

Load

Percent 

Error

Critical 

Load

Percent 

Error

1 ∞ ∞ ∞ ∞ ∞ ∞

2 10,634 21.59% 10,633 21.58% ∞ ∞

3 9,570.3 9.43% 9,570.0 9.43% ∞ ∞

4 9,204.0 5.24% 9,203.7 5.24% ∞ ∞

5 9,037.2 3.33% 9,036.9 3.33% ∞ ∞

10 8,818.0 0.83% 8,817.7 0.82% ∞ ∞

30 8,753.9 0.10% 8,753.6 0.09% ∞ ∞

100 8,746.6 0.01% 8,746.3 0.01% ∞ ∞

Corotational PDelta Linear
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Analyses are performed with 5 elastic displacement-based beam-column elements 

(elasticBeamColumn) along the height of the column. The analysis results are compared to 

the analytical solution given in Southwell (1941).  

The results (Figure 4c) show a wide variety of behavior. As expected the Linear 

transformation produced a linear load-deformation response and constant Eigen value. The 

Corotational transformation follows very closely the analytical solution to very high levels 

of load and deformation. The PDelta transformation produces similar results to that of the 

Corotational transformation up to a load near the critical load. However, near the critical 

load, the deformation increases asymptotically and above the critical load the deformation is in 

the opposite direction of the analytical solution. This analysis indicates that for low to medium 

levels of axial load, the PDelta transformation will provide accurate results but for high levels 

the results may be very inaccurate.  

 

 
(a) Configuration 

E = 29,000 

I = 110 

A = 9.12 

L = 60 

 

 

(b) Properties 

 
(c) Results 

Figure 4. Configuration and Results of the Analysis of a Cantilever under Axial Loading 
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Cantilever under Axial and Transverse Loading 

To study the accuracy of the two nonlinear coordinate transformations in a more practical 

sense, the response of a cantilever column under axial and transverse loading is studied. The 

structure, as described in Figure 5a, is initially straight. Analyses are performed for both strong 

and weak axis bending with varying number of elastic displacement-based beam-column 

elements (elasticBeamColumn) distributed uniformly along the height of the column. The 

analysis results are compared to the analytical solution given in Equations 19 through 21 (AISC 

2005). 

 ( ) tan
@ 0

MAX
M x HL

α
α

 = =  
 

 [19] 

 ( ) ( )3

3

3 tan
@

3
MAX

HL
y x L

EI

α α
α

− 
= =  

 
 [20] 

 
2PL

EI
α =  [21] 

The computational results and error statistics are shown in Figure 5c and d. From this 

data several observations can be made:  

• The accuracy of the deformation results is lower than that of the moment results. 

• The accuracy of the weak axis bending results is lower than that of the strong axis bending 

results. This can be attributed to greater nonlinearity in the weak axis bending case. The 

greater nonlinearity is due to the greater slenderness in the weak axis and is seen in the ratio 

between exact and first order results.  

• Multiple elements along the length of the member are necessary to ensure accuracy of 

results. In the case of strong axis bending, 2 elements is likely appropriate while in the case 

of weak axis bending, 4 elements is likely appropriate.  
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(a) Configuration 

E = 29,000 

Istrong = 110 

Iweak = 37.1 

A = 9.12 

L = 180 

P = 50 

H = 1 

 

 

(b) Properties 

 

 
 

(c) Strong Axis Bending Results 

 

 
 

(d) Weak Axis Bending Results 

Figure 5. Configuration and Results of the Analysis of a Cantilever under Axial and 

Transverse Loading 

  

L

P

y

x

H

M MAX % Error y MAX % Error M MAX % Error y MAX % Error

1 216.7 -0.73% 0.734 -4.14% 216.6 -0.75% 0.733 -4.18%

2 217.8 -0.22% 0.756 -1.25% 217.7 -0.24% 0.755 -1.30%

3 218.0 -0.10% 0.761 -0.58% 218.0 -0.12% 0.760 -0.62%

4 218.1 -0.06% 0.763 -0.33% 218.1 -0.08% 0.762 -0.37%

6 218.2 -0.03% 0.764 -0.15% 218.2 -0.05% 0.764 -0.19%

First Order 180.0 0.609 180.0 0.609

Exact 218.3 0.765 218.3 0.765

CorotationalNumber of 

Elements

PDelta

M MAX % Error y MAX % Error M MAX % Error y MAX % Error

1 361.4 -11.82% 3.628 -21.08% 361.1 -11.88% 3.624 -21.15%

2 393.4 -4.02% 4.267 -7.16% 393.0 -4.11% 4.261 -7.29%

3 402.0 -1.90% 4.441 -3.39% 401.6 -2.01% 4.434 -3.54%

4 405.4 -1.09% 4.507 -1.95% 404.9 -1.20% 4.500 -2.10%

6 407.8 -0.49% 4.556 -0.88% 407.3 -0.61% 4.549 -1.04%

8 408.7 -0.28% 4.574 -0.50% 408.2 -0.40% 4.566 -0.66%

10 409.1 -0.18% 4.582 -0.32% 408.6 -0.30% 4.574 -0.48%

First Order 180.0 1.807 180.0 1.807

Exact 409.8 4.597 409.8 4.597

Number of 

Elements

PDelta Corotational
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Simply Supported Column with End Moments 

In some cases the critical moment is not at a member end to investigate this, the response 

of a simply supported column with end moments is studied. The structure, as described in Figure 

6a, is initially straight. Analyses are performed with varying number of elastic displacement-

based beam-column elements (elasticBeamColumn) distributed uniformly along the length 

of the column. The load is a fraction of Pe1 which is computed using Equation 22. The analysis 

results are compared to converged results obtained using a large number of elements.  

 
2

1 2e

EI
P

L

π=  [22] 

Nodal displacements and bending moments are shown in Figure 6c for analyses with one, 

two, and three elements as well as converged results. The computational results and error 

statistics are tabulated in Figure 6d. From this data several observations can be made:  

• The maximum moment does not occur at a member end due the P-δ effect. 

• With one element, since the P-δ effect is not modeled, no nonlinearity is detected and the 

results are the same as that of a first order analysis. 

• There is not a monotonic increase in accuracy with increase in elements. This is because the 

maximum moment and displacement no not necessarily occur at element ends where these 

values are monitored. More accurate results are attained if element ends happen to be near 

the location of the maximum value. It should be noted that the maximum of the nodal 

displacements is taken as the maximum displacement, a more accurate method for 

determining the maximum displacement from an analysis would utilize the cubic 

displacement shape functions.  

• Multiple elements along the length of the member are necessary to ensure accuracy of 

results. Three elements appear to be appropriate for attaining accurate bending moments, 

while, six elements appear to be appropriate for attaining accurate transverse displacements.  

 

  



11 

 

 
(a) Configuration 

E = 29,000 

I = 110 

A = 9.12 

L = 120 

P = 0.3Pe1 

M1 = 12P 

M2 = –M1/2 

 

(b) Properties 

 
(c) Results 

 

 
 

(d) Tabular Results 

Figure 6. Configuration and Results of the Analysis of a Simply Supported Column with 

End Moments 
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M MAX % Error y MAX % Error M MAX % Error y MAX % Error

1 7,871 -16.27% 0.000 -100.00% 7,871 -16.27% 0.000 -100.00%

2 8,804 -6.35% 4.422 -7.43% 8,791 -6.48% 4.402 -7.85%

3 9,311 -0.95% 4.195 -12.18% 9,298 -1.09% 4.172 -12.68%

4 9,259 -1.51% 4.697 -1.68% 9,247 -1.63% 4.669 -2.26%

5 9,320 -0.85% 4.609 -3.51% 9,304 -1.03% 4.581 -4.10%

6 9,389 -0.12% 4.754 -0.49% 9,374 -0.28% 4.724 -1.11%

10 9,387 -0.14% 4.783 0.13% 9,373 -0.29% 4.753 -0.51%

Converged 9,400 4.777 9,400 4.777

Number of 

Elements

PDelta Corotational
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